
Real-Time GPU Fluid Dynamics

Jesús Mart́ın Berlanga

Scientific Computing
Computer Science Technical College (ETSIINF)

Technical University of Madrid (UPM)

January 19, 2017

Figure 1: Interactive simulation visualization

1

1 Preface

Fluids are found in a multitude of different places: In the water of a river,
in the cigar’s smoke, in the water vapor that creates clouds... There is an
increasing need for realistically representing these phenomena in all kinds of
graphics applications (e.g. in a video game).

In the Real-Time CPU Fluid Dynamics[1] prequel, the reader was introduced
to basic fluid concepts and formulae in order to code a CPU fluid implemen-
tation. This paper is a follow-up base for where it is further discussed how to
parallelize the (already previously explained) fluid algorithm for a high perfor-
mance. It is recommended to read Real-Time CPU Fluid Dynamics[1] before
trying to understand this paper, as a common ground of concepts, is established
in the CPU implementation document.

This CUDA GPU implementation is almost the same as the CUDA/OpenGL
Fluid Simulation demo. Some changes have been made, for example: in order
to measure the fps performance of the GPU implementation against the CPU
implementation, an automatic test where the fps average is calculated has been
added.

This document will prove particularly useful to whoever wants to extend
his learning from the NVidia documentation on GPU fluids since, to date and
as far as the author is concerned, CUDA/OpenGL Fluid Simulation[3] is not
very specific explaining how the code works; and GPU Gems: Chapter 39.
Fast Fluid Dynamics Simulation on the GPU [2] is outdated, not taking the
advantages of CUDA over Cg (C for Graphics - shading language) for general
purpose computing.

The source code along other resources can be found at rtfluids.bdevel.

org.

2

rtfluids.bdevel.org
rtfluids.bdevel.org

Contents

1 Preface 2

2 Introduction 4

3 CUDA Basics 4
3.1 Memory and Thread Hierarchy 4

3.1.1 Two-Dimensional Arrays Memory Access 5
3.2 Kernels . 7

4 CUDA Fluids Implementation 7
4.1 Libraries Alternatives . 7

4.1.1 cuFFT . 7
4.1.2 Textures . 8

4.2 Memory Allocation . 8
4.3 Vertex Buffer Mapping . 9
4.4 Thread Configuration . 9

4.4.1 External Forces . 12

5 Performance 12

A Target machine specifications 14

3

2 Introduction

Here is explained how a CPU fluid simulation can have its performance increased
by using CUDA, a GPU solution. Before presenting any implementation details
we will review some of the CUDA key-points. After that, the author explains
how to deploy a thread layout for fluid parallel computing. Furthermore, the
reader can find GPU optimized alternatives to CPU libraries. Finally, we will
compare the CUDA implementation performance to the CPU implementation.

3 CUDA Basics

CUDA is a general purpose computing toolkit. Using the collection of functions
at the CUDA API, a set of specifiers, and the CUDA compiler, the programmer
can parallelize a C function (kernel) for N threads. Since the fluid simulation
is based on a grid of vector velocities, we have to pay special attention to the
optimization of two-dimensional arrays memory accesses.

3.1 Memory and Thread Hierarchy

Threads are grouped into blocks that share the same streaming multiprocessor
(SM). Thus, they share the same shared memory and the same L1 cache (in-
troduced in Fermi architectures) for that SM. For this reason, it’s of extreme
importance that different blocks are as independent from one another as pos-
sible, this reduces the penalty associated with synchronization to access the
content stored in external shared memory as well as the penalty associated with
accessing a higher level of cache.

For convenience, each kernel spawns N threads that can be indexed in one
dimension (each thread is identified by an unique index, linear layout), two
dimensions (each thread is identified by two indexes, grid layout), or even three
dimensions. This is really valuable for the programmer.

Both memory and thread hierarchy explanations are well depicted in fig.
2 where the reader can see, for two kernels, their respective two grid memory
layouts (grid 0 and grid 1). In addition, the grid-0 thread layout and indexing
are also illustrated at the left.

4

Figure 2: Grid of thread blocks at left, memory hierarchy at right (from the
CUDA Toolkit Documentation)

When the blocks are totally independent from each other the block abstrac-
tion benefits are more clear: blocks can be distributed across several GPUs, at
different machines.

One final note, because a block is restrained to a SM, the maximum number
of threads per block is limited to the maximum number of threads the SM
supports (Up to 1024 threads in modern GPUs).

The numbers of cores per SM is called the warp size, which is 32 in all (See
Table 13. Technical Specifications per Compute Capability at CUDA Toolkit
Documentation) NVidia multiprocessors.

3.1.1 Two-Dimensional Arrays Memory Access

We commonly find memory access patterns were we access a grid with two
indexes, x and y.

// host-equivalent to: memPtr = malloc(sizeof(cData)*width*height)

cudaMalloc(&memPtr, sizeof(cData)*width*height);

...

array_index = width*y + x

Because of inherent design characteristics of memory and cache lines, the
width of the thread block, as well as the 2D array width, must be a multiple

5

of the warp size in order to ensure a maximum performance, as is described in
the CUDA guide of best practices. This, for example, will ensure that all warps
(SM) can access 128 bytes chunks of data in only one L1 cache request and do
not need more requests as happens in fig. 3.

Figure 3: Unaligned sequential addresses that fit into two 128-byte L1-cache
lines (from the CUDA Toolkit Documentation)

From the programmer point of view, all he has to do is to call cudaMal-
locPitch() when he needs to allocate a 2D array of memory: this function will
make sure the memory is properly aligned for best performance.

Figure 4: Padding is added, facilitating thread-blocks’ memory accesses to be
aligned to L1 cache when the block size is multiple of the warp size

Because of this memory alignment, a padding is introduced, and we no longer
index memory positions with the data width: we have to use the pitch value
(provided by cudaMallocPitch) to access memory. This is shown in fig. 4 (As
the reader can notice, what we are calling pitch is what we were calling pdx
when we had to iterate though an in-place fast Fourier transform array. Please,
refer to the Real-Time CPU Fluid Dynamics[1] paper). The code we explained
at the beginning of this section transforms to:

cudaMallocPitch(&memPtr, &pitch, sizeof(cData)*width, height);

...

array_index = pitch*y + x

6

Anyway, the programmer still have to make sure the block size is multiple
of 32.

3.2 Kernels

A kernel is defined adding the global specifier before a function definition.
When launching the kernel, the programmer can specify the number of blocks
(NB) and threads per block (TPB) with <<NB,TPB>> in the function call
after the function name and before the parenthesis for arguments.

In order to use a thread (and block) grid indexing layout, dim2 syntax (see
code sample below) need to be used.

The function is executed NB ·TPB times in parallel. blockIdx.x, blockIdx.y,
threadIdx.x, threadIdx.y are the variables which individually identify each thread
in the grid of blocks and threads. These identifiers will help us to access the
matching array index position for each thread (in case there is 1 thread for each
array position).

__global__ void MatAdd(float A[NN], float B[NN], float C[NN]) {

// If there is only one block: blockIdx.x and blockIdx.y are always 1

int array_index = N*threadIdx.y + threadIdx.x

C[array_index] = A[array_index] + B[array_index];

}

int main() {

...

dim2 numBlocks(1, 1); // in this case only 1 block: (1,1)

dim2 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}

4 CUDA Fluids Implementation

The main changes needed to port a CPU implementation to a CUDA implemen-
tation are described in this section. First, we present alternatives to CPU inter-
polation and the CPU fftw library. Second, we explain how to access OpenGL
vertex buffer from a kernel. After that, we need to allocate memory in the GPU
device that the kernels will use for the simulation step computation. Finally,
we have to decide what thread layout we will use.

4.1 Libraries Alternatives

4.1.1 cuFFT

cuFFT is a CUDA library that provides the same functionality the fftw provides.
The cuFFT was designed with the purpose of replicating the original fftw design.
Even the memory layout can be set in a FFTW-compatible mode as the code
used below shows.

7

// TODO: update kernels to use the new unpadded memory layout for perf

// rather than the old FFTW-compatible layout

cufftSetCompatibilityMode(planr2c, CUFFT_COMPATIBILITY_FFTW_PADDING);

cufftSetCompatibilityMode(planc2r, CUFFT_COMPATIBILITY_FFTW_PADDING);

This has one drawback, the layout will not follow the high-performance de-
sign we have previously thought it was possible to achieve with cudaMallocPitch.

We can easily transform between real and complex numbers with cuFFT:

// real to complex (fordward FFT)

cufftExecR2C(planr2c, (cufftReal *)vx, (cufftComplex *)vx);

cufftExecR2C(planr2c, (cufftReal *)vy, (cufftComplex *)vy);

// complex to real (inverse FFT)

cufftExecC2R(planc2r, (cufftComplex *)vx, (cufftReal *)vx));

cufftExecC2R(planc2r, (cufftComplex *)vy, (cufftReal *)vy));

4.1.2 Textures

When accessing data stored in a texture though floating-point indexes, the re-
turned values are implicitly interpolated when using a linear filter. For this
reason, we will bind a texture (with a linear filter) to dvfield and access dvfield
values through a texture instead of manually interpolating them.

It is important to indicate that because how textures are designed to work
with pixels (where each sample is positioned in the exact center of its corre-
sponding pixel), when addressing for example through the index (0.5, 0.5) we
are not interpolating the results from the vectors positioned at (0,0), (0,1),
(1,0) and (1,1), we are only accessing at the velocity stored at the sample po-
sitioned at (0,0). In other words, we need to sum .5 to both indexes to get the
interpolated value we were looking for.

The original CPU manual interpolation, originally performed at the advec-
tion step, can be changed to:

// first of all, update texture with dvfield velocity values

updateTexture(...);

// note how 0.5 is added to each calculated array index (gtidx and fi)

ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);

ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);

// vterm will hold the interpolated result

vterm = tex2D(texref, ploc.x, ploc.y);

4.2 Memory Allocation

Kernels need access to the velocity field memory. Kernels executed in a GPU
device only have access to the device memory. In the CPU version, we allo-
cated the velocity field in the hvfield with malloc. In the GPU version, we

8

need to allocate the velocity field (dvfield, device velocity field) in the GPU
device, with a CUDA function. For best performance, we allocate dvfield with
cudaMallocPitch.

// Allocate and initialize device data

cudaMallocPitch((void **)&dvfield, &tPitch, sizeof(cData)*DIM, DIM);

The FFTW-compatible memory layout requires to ordinarily allocate mem-
ory with cudaMalloc. We will index this array the same way we did in the CPU
version, using the pdx variable for the calculated padding.

// Temporary complex velocity field data

cudaMalloc((void **)&vxfield, sizeof(cData) * PDS);

cudaMalloc((void **)&vyfield, sizeof(cData) * PDS);

4.3 Vertex Buffer Mapping

CUDA provides handy functions to access the vertex buffer object (vbo), making
possible to map it to a (device) pointer as we did in the CPU version.

struct cudaGraphicsResource *cuda_vbo_resource; // handler

cData *p; // mapped vbo pointer

cudaGraphicsMapResources(1, &cuda_vbo_resource, 0);

cudaGraphicsResourceGetMappedPointer((void **)&p,

&num_bytes,cuda_vbo_resource);

// advect particles using the already mapped pointer

advectParticles_k<<<grid, tids>>>(p,...);

// dont forget to unmap!

cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0);

4.4 Thread Configuration

First, we choose a warp-size multiple for the block horizontal size: 32 · 2 = 64.
Then we have to choose a block vertical size. Because the typical maximum
threads per block is 1024, we cannot choose 64 for the vertical dimensions, as
we would have 64 · 64 = 4096 threads! For this reason we choose a 64x4 block
size (256 threads per block).

We divide the domain size in 64x64 square tiles and assign each tile to a
block. This means the four vertical threads will have to process 16 grid vectors
each one in order to process the entire square: 64 · 4 · 16 = 64 · 64. This domain
division is shown in fig 5.

9

Figure 5: Domain size vs thread hierarchy

10

Once we know how the thread configuration works, we can create a template
which will work for launching all simulation-step kernels. Pay close attention to
the template commentary as it adds further explanations.

void simulationStepKernel_launcher() {

// If the domain does not fit perfectly with the 64x64 tiles

// we still add the tiles where all the threads will not

// be taken advantage of.

// We will have to be careful to not access an non-existent

// memory position for an non-existent domain coordinate.

dim2 grid((dx/64)+(!(dx%64)?0:1), (dy/64)+(!(dy%64)?0:1));

dim2 tids(64, 4);

// We have to pass to the kernel the pitch value

// we obtained after using cudaMallocPitch

simulationStepKernel_k<<<grid,

tids>>>simulationStepKernel_k(tPitch,...);

}

__global__ void simulationStepKernel_k(size_t pitch, ...) {

// We calculate the first grid coordinate position (gtidx,gtidy)

// were this thread need to operate. This is based on

// fig. 5.

int gtidx = blockIdx.x * blockDim.x + threadIdx.x;

int gtidy = blockIdx.y * (16 * blockDim.y) + threadIdx.y * 16;

if (gtidx < dx) { // This check makes sure we don’t try

// to acess an non-existent memory position for an

// non-existent domain coordinate.

// We access the 16 vectors each thread need to operate

// with. This coordinates are found moving in the +y

// axis direction from the first coordinate.

for (int p = 0; p < 16; p++) {

int gtdiyy = gtidy + p;

// Again, we make sure we dont access a non-existent

// coordinate

if (gtdiyy < dy) {

// Index taking the pitch into account

// Since the pitch value is in bytes, we

// have to do the calculations in bytes.

cData* f = (cData *)((char *)v + gtdiyy * pitch) + gtidx;

// Directly use the f pointer to

// write-to or read-from

// Finally, we calculate the memory index

// for vxfield and vyfield

// This index works for both vxfield and vyfield

int fj = gtdiyy*pitch + gtidx;

// vxfield[fj]; vyfield[fj];

11

// INSERT simulation-step specific code here

}

}

}

With the template already made, we only need to insert each simulation-step
specific code after the f index is calculated. This is straight-forward knowing
the CPU implementation code, few minor changes are required.

4.4.1 External Forces

For the addForces method, as we only have to compute a small tile of 9x9 (when
radius is 4), we only need to launch the kernel with a single 9x9 block thread.

#define FR 4 // Force update radius

dim3 tids(2*FR+1, 2*FR+1);

addForces_k<<<1, tids>>>(...);

5 Performance

After compiling the GPU version, a benchmark test is executed to obtain the
fps performance results:

./fluidsGL stress_test > fps_results.txt

The CUDA version is able to maintain an average of 1449.922729 frames per
second. An impressive 43.63 speed-up (1449.922729/33.206783) with respect to
the best of the CPU builds.

This results shows how important GPUs have become in the field of gen-
eral purpose computation. The GPU can be used to exploit highly parallel
algorithms for the best possible throughput or speed performance.

The best visual way to compare the CPU version against the GPU version
is to run both benchmarks at the same time and perceive how much faster the
GPU version outruns the CPU version. This is what is done at the Real-Time
Fluid Dynamics: CPU vs GPU demonstrative video, which can be watched at
rtfluids.bdevel.org. Take into consideration that, due to the screen recorder
impact on performance, the shown fps are slightly decreased.

The machine specifications where the builds have been tested are in the
appendix A.

12

rtfluids.bdevel.org

References

[1] Jesús Mart́ın Berlanga, Real-Time CPU Fluid Dynamics, Technical Univer-
sity of Madrid. Available online: http:rtfluids.bdevel.org.

[2] Mark J. Harris, GPU Gems: Chapter 39. Fast Fluid Dynamics Simu-
lation on the GPU, NVIDIA, University of North Carolina at Chapel
Hill. Available online: http://http.developer.nvidia.com/GPUGems/

gpugems_ch38.html.

[3] Nolan Goodnight, CUDA/OpenGL Fluid Simulation, NVIDIA Corporation.

[4] Jos Stam, Stable Fluids, In Proceedings of SIGGRAPH 1999. Available
online: http://www.dgp.toronto.edu/people/stam/reality/Research/

pdf/ns.pdf.

[5] CUDA C Programming Guide, NVIDIA. Available online: http://docs.

nvidia.com/cuda/cuda-c-programming-guide.

[6] CUDA C Best Practices Guide, NVIDIA. Available online: http://docs.

nvidia.com/cuda/cuda-c-best-practices-guide.

[7] cuFFT Documentation, NVIDIA. Available online: http://docs.nvidia.

com/cuda/cufft.

13

http:rtfluids.bdevel.org
http://http.developer.nvidia.com/GPUGems/gpugems_ch38.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch38.html
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://docs.nvidia.com/cuda/cufft
http://docs.nvidia.com/cuda/cufft

A Target machine specifications

1. OS: Ubuntu 14.04.4 LTS 64 bits

kernel: Linux 3.13.0-57-generic (x86 64)

2. CPU: 8x Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz

3. RAM: 18488 MB

4. GPU: GeForce GTX 780

CUDA Capability 3.5

NVIDIA Driver Version: 361.93.02

5. Compilers:

g++ version 4.8.4 (Ubuntu 4.8.4-2ubuntu1 14.04.3)

icpc 17.0.1

14

	Preface
	Introduction
	CUDA Basics
	Memory and Thread Hierarchy
	Two-Dimensional Arrays Memory Access

	Kernels

	CUDA Fluids Implementation
	Libraries Alternatives
	cuFFT
	Textures

	Memory Allocation
	Vertex Buffer Mapping
	Thread Configuration
	External Forces

	Performance
	Target machine specifications

