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Figure 1: Interactive simulation visualization
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1 Preface

Fluids are found in a multitude of different places: In the water of a river,
in the cigar’s smoke, in the water vapor that creates clouds... There is an
increasing need for realistically representing these phenomena in all kinds of
graphics applications (e.g. in a video game).

The reader will be introduced to basic fluid concepts and formulae in order
to code a CPU implementation. This paper is the base for, Real-Time GPU
Fluid Dynamics, a follow-up where it is further discussed how to parallelize the
algorithm here explained for a high performance.

Finally, the resultant CPU program has been subjected to some basic op-
timization procedures. Nonetheless, the emphasis of this paper remains in the
understanding of the selected algorithm on account of the application being fully
optimized in the Real-Time GPU Fluid Dynamics paper that can be found along
with the source code and other resources at the rtfluids.bdevel.org website.

The development has been made porting the CUDA/OpenGL Fluid Sim-
ulation GPU demo to a CPU version. However, for educational and logical
purposes here it is explained as if it would have been developed from scratch.

This document will prove particularly useful to whoever wants to extend his
learning from the NVidia documentation on GPU fluids since, to date and as far
as the author is concerned, CUDA/OpenGL Fluid Simulation[2] is quite vague
at explaining how the code works; and GPU Gems: Chapter 39. Fast Fluid
Dynamics Simulation on the GPU [1] is outdated, not taking the advantages
of CUDA over Cg (C for Graphics - shading language) for general purpose
software.
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2 Introduction

Here is explained how to implement a 2D CPU fluid simulation and interactively
display the results. In order to implement a fluid simulation, first, we need a
mathematical foundation of the equations involved in fluids. These equations
allow us to elaborate an algorithm for computing, at a given time step, the
resultant fluid representation. After we have studied the steps involved in the
simulation we will proceed to explain the CPU implementation and how to ease
the debugging process. Lastly, we will compile, profile and attempt to optimize
the application only to later present the performance results.

The physically-based simulation presented here uses particles that are carried
by the fluid velocity field so it can be real-time visualized.

3 Mathematical Background

3.1 Fluid Representation

A fluid can be represented with a Cartesian grid (fig. 2) of velocities which
indicate how the fluid will move itself as well as other objects inside the fluid.

Figure 2: The Fluid Velocity Grid (from GPU Gems)

5



3.2 The Navier-Strokes Equations for Incompressible Flow

In order to simplify the fluid simulation to suit our needs and scope, we assume
that the fluid is incompressible and homogeneous. This effectively means that
its density is constant in time and space (in any case, this simplification does
not decrease the mathematical relevance for, to give an example, water and air
simulations).

These simplifications are reflected in the Navier-Strokes equations for incom-
pressible flow:

∂~u

∂t
= −(~u · 5)~u− 1

ρ
5 p+ ν 52 ~u+ ~F ,

5 · ~u = 0

Where ~u(~x, t) is the velocity field that represents the fluid in the spatial coor-
dinates of the grid (in this case a two-dimensional grid) ~x = (x, y). p = (~x, t)

is a scalar pressure field, ν is the kinematic viscosity, and ~F represents possible
externals forces that apply to the fluid.

The equations can be solved and decomposed in order to obtain a description
of the steps involved in the simulation and their formulas. These complex real-
izations are not described here but are well explained in GPU Gems: Chapter
39. Fast Fluid Dynamics Simulation on the GPU [1] and Stable Fluids[3].

3.3 Simulation Steps

The simulation orderly consist of:

1. Fluid advection

2. Fluid diffusion

3. Fluid projection

4. Objects (including particles) advection

3.3.1 Advection

The fluid moves itself with his own velocity field (known as self-advection, fluid
advection or velocity advection) as well as other objects.

Self-advection is described with the following formula:

~u(~x, t+ 1) = u(−~u(~x, t) · dt, t)

We trace velocity back (fig. 3) in order to step calculating the next value of
velocity. We have to do this for every ~u in our grid.
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Figure 3: Fluid Advection (from GPU Gems)

Object advection can be simply performed by moving the object at position
~p, in function of the velocity where the object is located at the current time
~v(~p(t)):

~p(t+ 1) = ~p+ dt ∗ ~v(~p(t))

This equation can be used to move a set of rendered particles that represent the
fluid to be visualized by an end-user of the application.

3.3.2 Diffusion

The viscosity ν of a fluid measures how forces diffuse across the velocity field over
time. In the diffusion step, we calculate the dissipation of the fluid’s velocity
applying an operator to our grid. This operator is a simple convolution (this
is the pointwise product of two functions in the frequency spatial domain -
convolution theorem).

Diffusion takes the following form in the frequency domain:

~u(k, t+ 1) = ~u(k, t)/(1 + ν ∗ dt ∗ k2)

Where ~k is the wavenumber.
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3.3.3 Projection

We need to make sure our liquid is incompressible in order to our Navier-Strokes
Equations for Incompressible Flow remain valid. After applying our diffusion
equation our fluid no longer meets the mass conserving requirement for incom-
pressible fluids. For this reason, we have to include an additional projection
step to force the velocity field to be non-divergent.

The following projection equation works in the frequency domain:

~u(k, t+ 1) = ~u(k, t)− 1

k2
(k · (~u(k, t))k

3.4 Initial Conditions

A still fluid will be assumed. Thus the simulation starts with zero velocity in
the whole grid.

3.5 Boundary Conditions

The boundary states how the fluid will behave in the edges of our domain. We
have to set boundary conditions because we have a limited domain, in this case,
is the size of the grid.

There are various possibilities in terms of boundary conditions, some of the
solutions are rather complex e.g no-slip boundary conditions where the liquid
is expected to bounce when colliding with the edges of the domain. A periodic
boundary condition (PBC, fig. 4) simulates a spatially infinite system on the
different axes - for simplicity, this approach is taken.

Figure 4: Periodic boundary condition (from Wikipedia)

8



In a PBC, when an object cross one boundary sides it appears on the opposite
side with the same velocity. This applies to the fluid particles.

4 Implementation

The implementation is written in C++, we have used the fftw library to Fourier
transform the time domain into the frequency domain and vice versa. For
interpolation, needed at the velocity advection step, we have used a source code
obtainable at the website helloacm.com. For visualization, GLUT and OpenGL
is used.

The solver works by progressively incrementing the time, t, by a fixed value
(delta time) in each iteration. In one iteration, all steps (velocity advection,
diffusion, projection and particle advection) are executed in order.

4.1 Problem Conditions and Storage of the Fluid’s State

The default problems conditions are established in the defines.c file, the condi-
tions can be changed at runtime (must be changed before actually starting the
simulation). One must call updateVariables() after changing these variables to
make sure dependable variables are updated with the changes. With this file,
we can configure the viscosity constant (VIS ) and the delta time (DT ) for the
iterative solver.

For easiness, a square-shaped domain will be used; the square size is defined
in the DIM variable. If we know DIM then the domain size, DS, is DIM ·DIM .

int DIM = 512;

...

float DT = 0.09f;

float VIS = 0.0025f;

...

void updateVariables() {

DS = (DIM*DIM);

...

}

4.1.1 Real Velocity Vectors

Once we know the total domain size we can allocate memory for our grid (named
hvfield) of 2D velocity vectors (the cData struct represent a vector with two
floats: x and y). We make sure we all velocity vectors are set to zero with
memset to comply with our initial conditions:

cData *hvfield = NULL;

...

hvfield = (cData *)malloc(sizeof(cData) * DS);

memset(hvfield, 0, sizeof(cData) * DS);
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4.1.2 Complex Velocity Vectors

We will also have to allocate memory for complex numbers since we will use the
frequency domain in the diffusion and projection steps. We will use the fftw3
library to transform back and forth between the real numbers stored in hvfield
and our complex numbers.

Two things must be realized. First, x and y parts of the vector are trans-
formed independently thus they need to be stored separately. Second, complex
numbers need twice the memory real numbers require to be designated. There-
fore, enough memory will be allocated from the beginning for the complex num-
bers. Its also to be noted that if we want to transform in-place (without needing
to allocate additional memory for the output), we need to allocate extra padding
memory (as it’s represented and formulated in fig. 5).

Figure 5: Input and output arrays for Multi-Dimensionals DFTs (discrete
Fourier transforms) of Real Data (from fftw.org)
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Note that a fftwf complex is nothing more than float array with enough
space, two floats, for the real and imaginary parts of the complex number. As
a result, we can use the fftwf complex or the cData struct types indistinctly.

The code for the padding domain size (PDS ) and related variables, as well
as the code for assigning dynamic memory for the x (vxfield) and y (vyfield)
complex components of the field can be found below:

...

int CPADW = (DIM/2+1); // Padded width for real->complex in-place FFT

int RPADW = (2*(DIM/2+1)); // Padded width for real->complex in-place FFT

int PDS = (DIM*CPADW); // Padded total domain size

... // RealPADW is 2*ComplexPADW since a complex number need two floats

void updateVariables() {

...

CPADW = (DIM/2+1);

RPADW = (2*(DIM/2+1));

PDS = (DIM*CPADW);

...

}

...

static cData *vxfield = NULL;

static cData *vyfield = NULL;

...

vxfield = (cData*) malloc(sizeof(cData) * PDS);

vyfield = (cData*) malloc(sizeof(cData) * PDS);

4.1.3 Particles

Finally, the particles’ array, which will be later rendered, need to be allocated
too. We will render as many particles as the domain size, but note that this
number could be changed as particles are independent from the velocity field.
The particles’ position will be randomly generated. The random method output
will not vary between platforms, this is particularly useful for debugging and
testing.

static cData *particles = NULL; // particle positions in host memory

...

particles = (cData *)malloc(sizeof(cData) * DS);

memset(particles, 0, sizeof(cData) * DS);

initParticles(particles, DIM, DIM);

4.2 Interaction and Visualization

The application is able to display how the fluid particles move in the canvas.
The user can interact with the fluid adding externals forces when clicking and
dragging the mouse.
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4.2.1 Vertex Buffer

OpenGL is used to display the resultant particles’ position after a simulation
iteration has taken place. OpenGL can render the points representing the par-
ticles after their positions are copied to an OpenGL vertex buffer object (vbo).
OpenGL can work with several vertex buffer objects so we need to indicate him
in which one we want to operate with glBindBuffer(GLenum target, GLuint
buffer id). After this, we can do different kinds of operations with the buffer.
Lastly, we need to indicate OpenGL that we are no longer operating with that
buffer with a call to glBindBuffer passing a 0 in the buffer id parameter.

Here is how to initialize the OpenGL buffer (in this case, an array buffer). A
new buffer id is assigned (and stored in the vbo variable) to the newly generated
buffer. The previously randomly generated particles’ positions are copied to the
buffer with glBufferData.

GLuint vbo = 0;

...

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER, vbo); // Select buffer

glBufferData(GL_ARRAY_BUFFER, sizeof(cData) * DS,particles,

GL_DYNAMIC_DRAW_ARB);

glBindBuffer(GL_ARRAY_BUFFER, 0); // Unselect buffer

However, it is not enough to copy the initialized particles to the buffer array
since the particles array will be constantly modified as new simulation iterations
take place and the positions, of the particles, are calculated. We need to update
the vertex buffer as new changes take place. The whole particles array could just
be copied again after particles are updated, but a different approach is taken:
The host particles array will be mapped to the vertex buffer so the changes
directly made through the mapped pointer will be automatically reflected in
the vertex buffer.

// read/write mapping

void mapGlBuffer() {

glBindBuffer(GL_ARRAY_BUFFER, vbo);

glBufferMap = (cData*) glMapBufferRange(GL_ARRAY_BUFFER, 0,

sizeof(cData) * DS, GL_MAP_WRITE_BIT | GL_MAP_READ_BIT);

glBindBuffer(GL_ARRAY_BUFFER, 0);

}

void unmapGLBuffer() {

glBindBuffer(GL_ARRAY_BUFFER, vbo);

glUnmapBuffer(GL_ARRAY_BUFFER);

glBindBuffer(GL_ARRAY_BUFFER, 0);

}

This way, the mapped pointer can be passed to the particle advection func-
tion which will directly change the vertex buffer with the new positions for the
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particles. We have to be careful, though: If a buffer is used for feedback at
the same time it’s read/written for another purpose it will cause an error, this
remain true if the buffer is still mapped when calling glDrawArrays which will
render the particles. Consequently, the unmapGLBuffer() has to be included to
unmap the buffer when it’s not longer needed.

4.2.2 OpenGL initialization

OpenGL is initialized with the initGL function where an RGB window is cre-
ated with dimensions equal to the fluid grid dimensions (although the window
dimensions are forced to be at least 512 · 512). The window can be resized, this
functionality is provided by the reshape function.

static int wWidth = MAX(512, DIM);

static int wHeight = MAX(512, DIM);

...

int initGL(int *argc, char **argv)

{

glutInit(argc, argv);

glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);

glutInitWindowSize(wWidth, wHeight);

glutCreateWindow("Compute Stable Fluids");

...

The GLUT DOUBLE option specifies that double buffer rendering will be
used. In this strategy, one buffer is being used to display the results on the screen
device while the second is, at the same time, manipulated to make rendering
operations for the next frame that will be sent to the screen. When the screen
has started showing the results of the first buffer (vsync) and the next frame
processing is finished, the program calls glutSwapBuffers() to send the new frame
to the display and use the other buffer to render another frame.

Next, event listener functions are registered. These functions will be called
when the window need to be redrawn (display), the window is resized (reshape),
a keystroke is pressed (keyboard), the mouse is clicked (click), or the mouse is
dragged (motion).

...

glutDisplayFunc(display);

glutKeyboardFunc(keyboard);

glutMouseFunc(click);

glutMotionFunc(motion);

glutReshapeFunc(reshape);

return true;

}
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4.2.3 Main loop

Once glutMainLoop() is executed, the display() function will be called. In the
display() function a fluid simulation iteration takes place (simulateFluids), then,
after the particles new positions are calculated, glDrawArrays is used to render a
point (GL POINTS ) for each particle in the particles’ array. The buffer with the
drawn points is then made visible in the screen with glSwapBuffers(). Finally, a
call to glutPostRedisplay() makes sure display() is called again, creating a loop.
This process is illustrated in fig. 6.

Figure 6: Main loop scheme

4.2.4 Mouse events

Mouse events are used to generate and simulate external forces, giving the user
the ability to interact with the fluid.

The click listener register in which location the user has clicked the canvas.
The listener is called when the mouse is pressed and when the mouse button has
been released. We register if the mouse is still pressed with the clicked variable.
When the mouse is pressed the positions of the click are registered in the lastx
and lasty variables.

void click(int button, int updown, int x, int y)

{

lastx = x;

lasty = y;

clicked = !clicked;

}

The motion listener is called as the mouse moves across the window whether
the mouse is pressed or not. For this reason, the clicked variable is checked
before attempting to add an external force (with addForces). If the mouse is
clicked, the force to be added is proportional to the distance from the cursor
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to it last position (lastx and lasty). The force is applied in a FR radius at a
coordinate that reflects the motion of the mouse.

4.2.5 Keyboard events

The keyboard listener checks if the Esc or r key is pressed to provide some useful
functionality. When the r key is pressed, the simulation is reset: the particles
positions are randomly generated again. This avoids the need to constantly close
and run the program. In addition, when the Esc key is pressed, the program
exit with success.

4.3 Simulation Steps Implementation

All the simulations steps are inside the simulateFluids method, which is repeat-
edly called by the main loop (note that the external force step was not in our
original mathematical algorithm, addForces is called from the motion listener).

Velocity is measured relative to the domain size. A x velocity component
with value of 0.5 in a 10size unit horizontal dimension (dx ) would have the
same absolute velocity as a value of 0.25 in a 20size unit horizontal dimension.
See fig 7.

Figure 7: How relative velocities work

This is the process for simulating one simulation iteration:

1. advect real velocity vectors

2. transform real velocity vectors to complex (r2c, real to complex)

3. diffuse complex velocity vectors

4. project complex velocity vectors

5. transform complex numbers back to real ones (c2r, complex to real)

6. normalize velocity vectors

7. map vertex buffer

8. advect vertex buffer particles’

9. unmap vertex buffer
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Since both diffuse and project steps (steps 3 and 5) need to operate with com-
plex numbers, both computations are included inside the diffuseProject function.
Moreover, at the beginning of such function, the real numbers of the input are
transformed to complex numbers (step 2). Ultimately, complex numbers are
transformed back to the real numbers (step 5) that will be returned.

The normalization is step is required in order the force the velocity values to
remain in the domain-size scale (values relative to the domain size). This step
is perform by updateVelocity which directly saves the normalized vectors in the
hvfield which will be used by advectParticles.

See the simplified simulation workflow that represents the nine steps at fig.
8.

Figure 8: Workflow of the implemented fluid simulation

Note how advectVelocity advect the hvfield velocity vectors directly storing
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the real results in vxfield (for x components) and vyfield (for y components).
By storing the real results directly to vxfield and vyfield it’s not needed to copy
the results in an additional step before using fftw3 and executing diffuse and
project.

4.3.1 Array Indexing

All the steps (except for adding externals forces) need to access every one of the
velocity vectors in the grid to perform operations in each one of them (for this
reason, a high throughput can be archived using a parallel computing solution
like CUDA).

In memory, the elements of same domain’s row are stored contiguously.
Hence, we iterate our array row by row (in the order the elements are stored in
memory). See fig. 9.

Figure 9: Arrays indexation

Already knowing how arrays will be indexed an iteration template for ad-
vectVelocity, diffuseProject, updateVelocity and advectParticles can be made:

int x, y;

for(x=0; x < dx; x++) {

for(y=0; y < dy; y++) {

// hvfield/particles field index: hvfield[f], glBufferMap[f]

int f = y*dx + x;
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// vxfield/vyfield index: vxfield[fj], vyfield[fj]

int fj = y*pdx + x;

// insert simulation step code here

}

}

Finally, let us note that in some of the simulation steps, a cell in the grid may
need to access a neighborhood velocity vector. Because of the periodic boundary
conditions, coordinates calculated outside the domain size are transformed in
equivalents coordinates that don’t exceed the domain dx or dy dimensions nor
are in negative values.

4.3.2 advectVelocity

First, the velocity is traced back: −~u(~x, t) · dt. Relative velocity components
are multiplied by the domain horizontal (dx ) and vertical (dy) dimensions to
obtain the absolute velocity values.

cData vterm, ploc;

vterm = vhfield[f];

ploc.x = x - (dt * vterm.x * dx);

ploc.y = y - (dt * vterm.y * dy);

// translate ploc.x and ploc.y into equivalent coordinates.

However, the floating position stored in ploc can not be used to index and
get the needed velocity vector. For this reason, we interpolate the grid velocity
values around the ploc location as shown in fig. 10.

Figure 10: Velocity at ploc coordinates does not exist in the grid.

Once the interpolated velocity vector is calculated (each component is inter-
polated separately) it is stored in vxfield and vyfield.
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// Calculate the integer coordinates point11, point12, point22

// around the floating point ploc coordinate.

// Calculate array indexes and obtain velocity values for

// each pointXY

vterm.x = BilinearInterpolation(point11, point12, point21, point22,

u12.x, u12.x, u21.x, u22.x, ploc);

vterm.y = BilinearInterpolation(point11, point12, point21, point22,

u12.y, u12.y, u21.y, u22.y, ploc);

int fj = y*pdx + x;

vxfield[fj] = vterm.x;

vyfield[fj] = vterm.y;

4.3.3 diffuseProject

First of all, the real numbers stored in vxfield and vyfield will be independently
transformed to complex numbers creating a fftwf plan and then executing it.

plan = fftwf_plan_dft_r2c_2d(DIM, DIM, (float*) vxfield, (float

(*)[2]) vxfield, 0);

fftwf_execute(plan); // fft for the vxfield

The remaining diffuseProject code pretty much reflects what’s explained in
the mathematical foundations section for the diffuse and project steps: The
squared wavenumber is computed and the diffusion formula is applied to the
velocity vector, only to later apply the projection formula.

4.3.4 updateVelocity

This is a very simple step. After applying a convolution in the FFT (fast Fourier
transform) at the previous step, the velocity vectors need to be normalized. This
is achieved by dividing each vector by the domain dimension (DS = DIM ∗
DIM = dx ∗ dy).

4.3.5 advectParticles

First of all, particle positions are relative to the domain size in the same way
velocity values are relative to the domain size. Consequently, particle values are
in the [0, 1] range, as the OpenGL draw function requires. Since both velocity
and position are in the same relative scale we can normally operate and apply
the object advection formula.

pterm.x += dt * vterm.x;

pterm.y += dt * vterm.y;
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4.3.6 addForces

In this method, the force (fx,fy) is added in a r radius.

Figure 11: Add forces

The iteration of the velocity array starts at (spx,spy).

for(x=0; x < nx; x++) {

for(y=0; y < ny; y++)

{ // Here is the code to iterate the array to add forces

int viy = y + spy;

int vix = x + spx;

int f = viy*dx + vix;

Before adding the force to each array vector in the iteration, a smooth factor
is applied to the force. The smooth permits to apply lower forces to the farthest
from center coordinates, making the force addition behave more realistically.

int xmr = x-r; // when x = r -> xmr = 0 \

int ymr = y-r; // and y = r -> ymr = 0 |-> s/fx/fy takes maximum value

float s = 1.f / (1.f + xmr*xmr*xmr*xmr + ymr*ymr*ymr*ymr);

vterm.x += s * fx;

vterm.y += s * fy;

5 Debugging

Several bugs have occurred during the development (port of the GPU demo to
a CPU version) of the application. With the purpose of detecting these errors
and verifying that the application works correctly after they have been fixed,
the application has a built-in test where the simulation domain is reduced to a
8x8 square and some predefined forces are added. Because the particle pseudo-
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random algorithm is consistent between architectures, each time the test is run,
the same results are obtained, making it suitable for debugging.

If the source code is compiled after uncommenting the

#define DUMPEABLE

preprocessor directive at fluidsGL.cpp and fluidsGL cpu.cpp, a series of memory
dumps and debug messages will be printed at dump test/dump.txt (relative to
the working directory): the content of hvfield, vxfield and vyfield is shown after
and before each simulation step-function, and also after and before addForces.
Additionally, the content of the particles vertex array is shown after mapping
and before unmaping. Finally, diverse debug messages permit to follow how each
simulation step-function works by showing the content of important variables.

The debug test can be launched with:

$ ./fluidsGL test

You can find the full trace at the original file from the source code available
at rtfluids.bdevel.org.

6 Benchmarking

With the purpose of estimating the average frames per second the implementa-
tion can achieve, we have codified an automatic test that runs 10,000 simulation
iterations before stopping. This measure is notably appropriate to compare the
performance with different hardware, compilations, and different implementa-
tions (for example, to measure the performance against a CUDA implementa-
tion).

When running the test: mouse or keyboard interaction is disabled. Each 10
iterations the benchmark will generate a predefined external force to alter the
state of the fluid.

void display(void)

{

...

if(stress_test && stress_test_step_index < 10000) {

if(stress_test_step_index % 10 == 0) {

// Add Force (simulate click)

// each 10 steps

...

addForces(hvfield, DIM, DIM, spx, spy, FORCE * DT * fx, FORCE

* DT * fy, FR);

}

stress_test_step_index++;

The code for calculating the frames per second is included inside the main
loop, inside the display function. Every time after a frame is rendered with
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glDrawArrays, a frame counter is increased. Approximately every one second
the fps is calculated by dividing the frame counter by the time passed since the
last fps calculation. The current time is obtained with glutGet(GLUT ELAPSED TIME),
which reports the time in milliseconds. The measured fps samples, as well as
the average fps, are reported via standard output.

void display(void)

{

...

fpsCount++;

time = glutGet(GLUT_ELAPSED_TIME)

if ((time - base_time) > 1000)

// atleast 1 second guaranteed between each measure

// approximately 1 second between each measure

{

// multiply by 1000 to convert ms to seconds

fps=fpsCount*1000.0f/(time - base_time);

// update last taken fps time (base_time)

base_time = time;

// reset fps count

fpsCount=0;

...

The benchmark can be launched with:

$ ./fluidsGL stress_test

7 Basic Compilations

With the premise of the compiler being able to automatically optimize the
program, the source has been compiled with all the different available opti-
mization flags (-O) in the g++ (GNU C++ compiler) and icpc (Intel C-plus
compiler) compilers. Note that the optimization flags are only applied to the
bilinear interpolation.cpp and fluidsGL cpu.cpp files where the heavy simulation
steps computation are performed: It does not make sense to optimize other files
- this hypothesis is confirmed later at the profiling stage.

The basic Makefile rules are as follow:

defines.o: defines.c

$(CXX) $(CXXFLAGS) -c defines.c -o $(BINARY_DIR)/$@

bilinear_interpolation.o: bilinear_interpolation.cpp

$(CXX) $(CXXFLAGS) $(OPT_FLAGS) -c bilinear_interpolation.cpp -o

$(BINARY_DIR)/$@

fluidsGL.o: fluidsGL.cpp

$(CXX) $(CXXFLAGS) -c fluidsGL.cpp -o $(BINARY_DIR)/$@

fluidsGL_cpu.o: fluidsGL_cpu.cpp
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$(CXX) $(CXXFLAGS) $(OPT_FLAGS) -c fluidsGL_cpu.cpp -o

$(BINARY_DIR)/$@

fluidsGL: fluidsGL.o fluidsGL_cpu.o bilinear_interpolation.o defines.o

$(CXX) $(CXXFLAGS) $(BINARY_DIR)/defines.o

$(BINARY_DIR)/bilinear_interpolation.o

$(BINARY_DIR)/fluidsGL_cpu.o $(BINARY_DIR)/fluidsGL.o -o

$(BINARY_DIR)/$@$(BIN_POST_NAME)$(DBG_NAME_APPEND) -lGL -lGLU

-lGLEW -lglut -lfftw3f

This basic options permit to compile all the different binaries by only setting-
up the proper flags. The CXX flag selects which compiler is used. In the
CXXFLAGS the -Wall option is included to show all warnings when compil-
ing (can be also used with the -g option, enabling the gdb, GNU debugger,
debugging symbols). The OPT FLAGS present at the fluidsGL cpu.o and bi-
linear interpolation.o object rules contain the different optimization flags to be
used. Finally, for the final binary, an identity string is appended at the end
with BIN POST NAME and DBG NAME APPEND to differentiate between
different types of compilations.

The build rule permits to compile all the different binaries. Have a look at
the following fragment as a example of how to compile for g++ zero optimization
and icpc level 3 (-O3 ) optimization:

INTEL_COMPILERS_FOLDER =

/opt/intel/compilers_and_libraries/linux/bin/intel64

INTEL_ICPC = "$(INTEL_COMPILERS_FOLDER)/icpc"

build:

make clean-objects; make build-gcc-O0

make clean-objects; make build-icc-O3

# ... other builds

build-gcc-O0: CXX = g++

build-gcc-O0: BIN_POST_NAME = -gcc-O0

build-gcc-O0: OPT_FLAGS = -O0

build-gcc-O0: fluidsGL

build-icc-O3: CXX = $(INTEL_ICPC)

build-icc-O3: BIN_POST_NAME = -icc-O3

build-icc-O3: OPT_FLAGS = -O3

build-icc-O3: fluidsGL

8 Profiling

8.1 GNU Profiling Tool

The GNU profiling tool (gprof ) help us to determine which parts of the program
are taking most of the execution time.
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In the make file there is defined a rule to compile with gprof : a g++ build
with -O0, a g++ build with -O1 and a icpc build with all optimization flags
enabled. The profile comparison between the -O0 and -O1 will help us under-
stand what section of the code is being benefited (if there is any performance
benefits) by basic optimization. We can as well compare the profile of the build
with less optimization operations -O1 and the one with the more a complex
optimization.

Here is how to make the gprof version of the g++ without optimizations:
rule (build-gcc-O0 ) is reused, adding an additional gprof -pg flag and the gdb
debug flag -g.

build-profile-gcc-O0: DBG_NAME_APPEND = -dbg-gprof

build-profile-gcc-O0: CXXFLAGS += -g -pg

build-profile-gcc-O0: build-gcc-O0

Another rule is included to actually run all the profiling test automatically
(after they have been compiled), copying the results to the profiling/*gprof.txt
file.

$ make build-profile # build all profile binaries

$ make profile # run and get profiling results for all gprof binaries

If we take a look at the profiling results for the gcc-O0 build we can observe
how the most computationally costly simulation step is velocity advection, fol-
lowed by particle advection (which need to access to the GPU (vertex buffer)
memory). Surprisingly, the the fft-diffusion-projection function is the one that
needs less time to execute. The program is the 99.7 percent of the time executing
any of these steps.

% time cumulative seconds self seconds calls name
35.48 198.16 198.16 10004 advectVelocity cpu
26.70 347.26 149.10 10004 advectParticles cpu
19.29 454.96 107.70 5244977152 BilinearInterpolation
9.91 510.31 55.35 10004 updateVelocity cpu
8.41 557.28 46.97 10004 diffuseProject cpu
0.00 558.91 0.00 1000 addForces cpu

There is an interesting fact, half the time (198.16/107.70) spent in the ve-
locity convection method is spent interpolating.

index % time self children called name
[4] 54.7 198.16 107.70 10004 advectVelocity cpu [4]

107.70 0.00 5244977152/5244977152 BilinearInterpolation [7]

The complete profiling results can be found with the source code.
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8.2 Advanced Compiler Optimizations

In addition to the four different Intel builds (from -O0 to -O3 ) an additional
build for the Intel compiler is the result of compiling with additional optimiza-
tion flags. These flags are inspired from the SPEC benchmark where different
computers and compilation configurations are listed along with their perfor-
mance punctuation. We have explored the SPEC floating point 2006 results.
The 2006 benchmark features a C test where incompressible fluids are simulated
(test identified as 470.lbm), we have special attention to this part of the results.

The Intel compilers are proprietary software and require license activation.
Students versions can be found along the Parallel Studio XE software package at
the following website: https://software.intel.com/en-us/qualify-for-free-software/
student.

8.2.1 Profile-Guided Optimization

We have observed that the Intel compiler with Profile-Guided optimization and
optimization level 3 is used in almost all configurations. Profile-Guided opti-
mization consists in first building with optimization disabled and the -prof-gen
flag activated, then when the binary is executed, dynamic information files are
generated. These dynamic profile files can be used to build another build with
the -prof-use flag. With the dynamic profile files, the compiler intelligence to
optimize the code is augmented.

8.2.2 Advanced Optimization Flags

The -no-prec-div tag is also frequently used, this disable float precision im-
provement on divides. -ansi-alias enables additional aggressive optimization
for programs that follow the ISO C Standard. -qopt-prefetch enables prefech
insertion.

-qopt-malloc-options=3, fairly used too, it let us select which malloc algo-
rithm we want to use; a non-zero value tells the compiler to intelligently insert
mallopt() configuration calls with the purpose of improving execution speed.

Finally, another flag frequently used is -xSSE, this enables Streaming SIMD
Extensions. With this option the compiler may automatically generate specific
SIMD instructions to perform parallel vector operations.

9 Performances

optimization flags fps (GNU compiler) fps (Intel compiler)
-O0 18.041941 17.385107
-O1 26.955856 27.730045
-O2 28.773472 28.940458
-O3 28.413486 31.053715
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-xSSSE3 -O3
-no-prec-div -prof-use
-qopt-malloc-options=3
-ansi-alias -qopt-prefetch

33.206783

As it can be appreciated, Intel compilations perform better as the optimiza-
tion level increases. The Intel performance increase as each optimization level
increases, the same can not be said about the GNU builds because the third
optimization level performance is nearly the same as the second optimization
level performance.

In favor of GNU, we have to say that their average binary size is less than
half of the Intel binary size, making it preferable for optimization levels zero, 1
and 2.

The profile-guided optimization and the additional optimization tags suc-
cessfully provide a performance edge.

The next table shows the reported gprof self-seconds for each simulation
function for different builds. Optimizations are mainly made in the advectVe-
locity method (and the subsequent bilinear interpolation).

function self-seconds: GNU -O0 GNU -O1 Intel Advanced Opt.
advectVelocity 305.86 167.44 95.79
diffuseProject 46.97 22.37 16.33
updateVelocity 55.35 37.99 42.43
advectParticles 149.10 86.57 84.11

The machine specifications where the builds have been tested are in the
appendix A.
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A Target machine specifications

1. OS: Ubuntu 14.04.4 LTS 64 bits

kernel: Linux 3.13.0-57-generic (x86 64)

2. CPU: 8x Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz

3. RAM: 18488 MB

4. GPU: GeForce GTX 780

CUDA Capability 3.5

NVIDIA Driver Version: 361.93.02

5. Compilers:

g++ version 4.8.4 (Ubuntu 4.8.4-2ubuntu1 14.04.3)

icpc 17.0.1
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